The Abelianization of the Congruence Ia-automorphism Group of a Free Group

نویسنده

  • Takao Satoh
چکیده

Let Fn be a free group of rank n. An automorphism of Fn is called an IA-automorphism if it trivially acts on the abelianization H of Fn. We denote by IAn the group of IA-automorphisms and call it the IA-automorphism group of Fn. For any integer d ≥ 2, let IAn,d be the group of automorphisms of Fn which trivially acts on H⊗ZZ/dZ. We call IAn,d the congruence IA-automorphism group of Fn of level d. In this paper we determine the abelianization of IAn,d for n ≥ 2 and d ≥ 2. Furthermore, for any odd prime integer p, we give some remarks on the (co)homology groups of IAn,p with trivial coefficients. In particullar, we show that the second cohomology group of IAn,p has non-trivial p-torsion elements for n ≥ 9 and, we completely calculate the homology groups of IA2,p for any dimension.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

First Cohomology Groups of the Automorphism Group of a Free Group with Coefficients in the Abelianization of the Ia-automorphism Group

We compute a twisted first cohomology group of the automorphism group of a free group with coefficients in the abelianization V of the IA-automorphism group of a free group. In particular, we show that it is generated by two crossed homomorphisms constructed with the Magnus representation and the Magnus expansion due to Morita and Kawazumi respectively. As a corollary, we see that the first Joh...

متن کامل

ON THE ABELIANIZATION OF CONGRUENCE SUBGROUPS OF Aut(F2)

Let Fn be the free group of rank n and let Aut +(Fn) be its special automorphism group. For an epimorphism π : Fn → G of the free group Fn onto a finite group G we call Γ (G, π) = {φ ∈ Aut+(Fn) | πφ = π} the standard congruence subgroup of Aut+(Fn) associated to G and π. In the case n = 2 we fully describe the abelianization of Γ(G, π) for finite abelian groups G. Moreover, we show that if G is...

متن کامل

Congruence Subgroups of the Automorphism Group of a Free Group

Let n ≥ 2 and Fn be the free group of rank n. Its automorphism group Aut(Fn) has a well-known surjective linear representation ρ : Aut(Fn) −→ Aut(Fn/F ′ n) = GLn(Z) where F ′ n denotes the commutator subgroup of Fn. By Aut (Fn) := ρ(SLn(Z)) we denote the special automorphism group of Fn. For an epimorphism π : Fn → G of Fn onto a finite group G we call Γ(G, π) := {φ ∈ Aut(Fn) | πφ = π} the stan...

متن کامل

The Kernel of the Magnus Representation of the Automorphism Group of a Free Group Is Not Finitely Generated

In this paper, we show that the abelianization of the kernel of the Magnus representation of the automorphism group of a free group is not finitely generated.

متن کامل

Twisted Second Homology Groups of the Automorphism Group of a Free Group

In this paper, we compute the second homology groups of the automorphism group of a free group with coefficients in the abelianization of the free group and its dual group except for the 2-torsion part, using combinatorial group theory.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005